
IJSRSET196528 | Received : 10 Oct 2019 | Accepted : 05 Nov 2019 | November-December-2019 [6 (6) : 13-20]

© 2019 IJSRSET | Volume 6 | Issue 6 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099

Themed Section : Engineering and Technology

DOI : https://doi.org/10.32628/IJSRSET196528

13

Model Based Object-Oriented Software Testing
Dr. S. Saravana Kumar

Assistant Professor, Department of Computer Science, Karpagam Academy of Higher Education, Coimbatore,

Tamil Nadu, India

ABSTRACT

Testing is an important phase of quality control in Software development. Software testing is necessary to

produce highly reliable systems. The use of a model to describe the behavior of a system is a proven and major

advantage to test. In this paper, we focus on model-based testing. The term model- based testing refers to test

case derivation from a model representing software behavior. We discuss model-based approach to automatic

testing of object oriented software which is carried out at the time of software development. We review the

reported research result in this area and also discuss recent trends. Finally, we close with a discussion of where

model-based testing fits in the present and future of software engineering.

Keywords : Testing, Object-oriented Software, UML, Model-based testing.

I. INTRODUCTION

The IEEE definition of testing is "the process of

exercising or evaluating a system or system

component by manual or automated means to verify

that it satisfies specified requirements or to identify

differences between expected and actual results." [16].

Software testing is the process of executing a software

system to determine whether it matches its

specification and executes in its intended

environment. A software failure occurs when a piece

of software does not perform as required and expected.

In testing, the software is executed with input data, or

test cases, and the output data is observed. As the

complexity and size of software grows, the time and

effort required to do sufficient testing grows. Manual

testing is time consuming, labor-intensive and error

prone. Therefore it is pressing to automate the testing

effort. The testing effort can be divided into three

parts: test case generation, test execution, and test

evaluation. However, the problem that has received

the highest attention is test-case selection. A test case

is the triplet [S, I, O] where I is the data input to the

system, S is the state of the system at which the data

is input, and O is the expected output of the system

[17]. The output data produced by the execution of

the software with a particular test case provides a

specification of the actual program behavior. Test case

generation in practice is still performed manually

most of the time, since automatic test case generation

approaches require formal or semi-formal

specification to select test case to detect faults in the

code implementation. Code based testing not an

entirely satisfactory approach to generate guarantee

acceptably thorough testing of modern software

products. Source code is no longer the single source

for selecting test cases, and nowadays, we can apply

testing techniques all along the development process,

by basing test selection on different pre-code artifacts,

such as requirements, specifications and design

models [2],[3]. Such a model may be generated from a

formal specification [7, 14] or may be designed by

software engineers through diagrammatic tools [15].

Code based testing has two important disadvantages.

First, certain aspects of behavior of a system are

difficult to extract from code but are easily obtained

https://doi.org/10.32628/IJSRSET196528

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Dr. S. Saravana Kumar, Int J Sci Res Sci Eng Technol. November-December-2019; 6 (6) : 13-20

 14

from design models. The state based behavior

captured in a state diagram and message paths are

simple examples of this. It is very difficult to extract

the state model of a class from its code. On the other

hand, it is usually explicitly available in the design

model. Similarly, all different sequences in which

messages may be interchanged among classes during

the use of a software is very difficult to extract from

the code, but is explicitly available in the UML

sequence diagrams. Another prominent disadvantage

of code based testing is very difficult to automate and

code based testing overwhelmingly depends on

manual test case design.

An alternative approach is to generate test cases from

requirements and specifications. These test cases are

derived from analysis and design stage itself. Test case

generation from design specifications has the added

advantage of allowing test cases to be available early

in the software development cycle, thereby making

test planning more effective. Model based testing

(MBT), as implied by the name itself, is the

generation of test cases and evaluation of test results

based on design and analysis models. This type of

testing is in contrast to the traditional approach that is

based solely on analysis of code and requirements

specification. In traditional approaches to software

testing, there are specific methodologies to select test

cases based on the source code of the program to be

tested. Test case design from the requirements

specification is a black box approach [14], where as

code-based testing is typically referred to as white box

testing. Model based testing, on the other hand is

referred to as the gray box testing approach.

Modern software products are often large and exhibit

very complex behavior. The Object-oriented (OO)

paradigm offers several benefits, such as encapsulation,

abstraction, and reusability to improve the quality of

software. However, at the same time, OO features

also introduce new challenges for testers: interactions

between objects may give rise to subtle errors that

could be hard to detect. Object-oriented environment

for design and implementation of software brings

about new issues in software testing. This is because

the above important features of an object oriented

program create several testing problems and bug

hazards [3]. Last decade has witnessed a very slow but

steady advancement made to the testing of object-

oriented systems. One of the main problems in testing

object-oriented programs is test case selection. Models

being simplified representations of systems are more

easily amenable for use in automated test case

generation. Automation of software development and

testing activities on the basis of models can result in

significant reductions in fault-removal, development

time and the overall cost overheads.

The concept of model-based testing was originally

derived from hardware testing, mainly in the

telecommunications and avionics industries. Of late,

the use of MBT has spread to a wide variety of

software product domains. The practical applications

of MBT are referred to [18]. A model is a simplified

depiction of a real system. It describes a system from a

certain viewpoint. Two different models of the same

system may appear entirely different since they

describe the system from different perspectives. For

example control

flow, data flow, module dependencies and program

dependency graphs express very different aspects of

the behavior of an implementation. A wide range of

model types using a variety of specification formats,

notations and languages ,such as UML, state diagrams,

data flow diagrams, control flow diagrams, decision

table, decision tree etc, have been established. We can

roughly classify these models into formal, semiformal

and informal models. Formal models have been

constructed using mathematical techniques such as

theory, calculus, logic, state machines, markov chains,

petrinets etc. Formal models have been successfully

used to automatically generate test cases. However, at

present formal models are very rarely constructed in

industry. Most of the models of software systems

constructed in industry are semiformal in nature. A

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Dr. S. Saravana Kumar, Int J Sci Res Sci Eng Technol. November-December-2019; 6 (6) : 13-20

 15

possible reason for this may be that the formal models

are very hard to construct. Our focus therefore in this

paper is the use of semiformal models in testing

object-oriented systems.

Pretschner et al. [3] present a detailed discussion

reviewing model based test generators. Barsel et al.

[20] study the relationship between model and

implementation coverage. The studies by Heimadahl

and George[19] indicate that different test suites with

the same coverage may detect fundamentally

different number of errors.

This paper has been organized as follows. The next

section presents an overview of various models used

in object-oriented software testing. The key activities

in an MBT process are discussed in section 3. Section

4 discusses the key benefits and pitfall of MBT.

Section 5 focuses use of model-based testing in the

present and future of software engineering. Section 6

concludes the paper.

II. MODELS USED IN SOFTWARE TESTING

In this section, we briefly review the important

software models that have been used in object-

oriented software testing.

2.1 UML Based Testing

Unified modeling language (UML) has over the last

decade turned out to be immensely popular in both

industry and academics and has been very widely

used for model based testing. Since being reported in

1997, UML has undergone successive refinements.

UML 2.0, the latest release of UML allows a designer

to model a system using a set of nine diagrams to

capture five views of the system. The use case model

is the user’s view of the system. A static /structural

view (i.e. class diagram) is used to model the

structural aspects of the system. The behavioral views

depict various types of behavior of a system. For

example, the state charts are used to describe the state

based behavior of a system. The sequence and

collaboration diagrams are used to describe the

interactions that occur among various objects of a

system during the operation of the system. The

activity diagram represents the sequence,

concurrency, and synchronization of various activities

performed by the system. Behavioral models are very

important in test case design, since most of the testing

detect bugs that manifest during specific run of the

software i.e. during a specific behavior of the software.

Besides the behavioral models, it is possible to

construct the implementation and environmental

views of the system. The object constraint language

(OCL) makes it possible to have precise models.

The work reported in [1-3, 5, 8] discuss various

aspects of UML-based model testing. A vast majority

of work examining MBT of object – oriented systems

focuses on the use of either class or state diagrams.

Both these categories of work overwhelmingly

address unit testing. Class diagrams provide

information about public interfaces of classes, method

signatures, and the various types of relationships

among classes. The state diagram-based testing

focuses on making the objects all possible states and

undertake all possible transitions. Several work

reported recently address use of sequence diagrams,

activity diagrams and collaboration diagrams in

testing [9].

2.2 Finite State Machines

FSM (Finite State machines) have been used since

long to capture the state –based behavior of systems.

Finite state machines (also known as finite automata)

have been around even before the inception of

software engineering. There is a stable and mature

theory of computing at the center of which are finite

state machines and other variations. Using finite state

models in the design and testing of computer

hardware components has been long established and

is considered a standard practice today. [13] was one

of the earliest, generally available articles addressing

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Dr. S. Saravana Kumar, Int J Sci Res Sci Eng Technol. November-December-2019; 6 (6) : 13-20

 16

the use of finite state models to design and test

software components. Finite state models are an

obvious fit with software testing where testers deal

with the chore of constructing input sequences to

supply as test data; state machines (directed graphs)

are ideal models for describing sequences of inputs.

This, combined with a wealth of graph traversal

algorithms, makes generating tests less of a burden

than manual testing. On the downside, complex

software implies large state machines, which are

nontrivial to construct and maintain. However, FSMs

being flat representations are handicapped by the

state explosion problem. State charts are an extension

of FSMs that has been proposed specifically to address

the shortcomings of FSMs [13].State charts are

hierarchical models. Each state of a state chart may

consist of lower-level state machines. Moreover they

support specifications of state-level concurrency.

Testing using state charts has been discussed in[21].

2.2 Markov Chains

Markov chains are stochastic models [24]. A specific

class of Markov chains, the discrete-parameter, finite-

state, time-homogenous, irreducible Markov chain,

has been used to model the usage of software. They

are structurally similar to finite state machines and

can be thought of as probabilistic automata. Their

primary worth has been, not only in generating tests,

but also in gathering and analyzing failure data to

estimate such measures as reliability and mean time to

failure. The body of literature on Markov chains in

testing is substantial and not always easy reading.

Work on testing particular systems can be found in

[22] and [23].

2.2 Grammars

Grammars have mostly been used to describe the

syntax of programming and other input languages.

Functionally speaking, different classes of grammars

are equivalent to different forms of state machines.

Sometimes, they are much easier and more compact

representation for modeling certain systems such as

parsers. Although they require some training, they

are, thereafter, generally easy to write, review, and

maintain. However, they may present some concerns

when it comes to generating tests and defining

coverage criteria, areas where not many articles have

been published.

III. A TYPICAL MODEL-BASED TESTING PROCESS

In this section, we discuss the different activities

constituting a typical MBT process.Fig.1 displays the

main activities in a life cycle of a MBT process. The

rectangles in Fig. 1 represent specific artifacts

developed used during MBT. The ovals represent

activities processes during MBT.

Figure 1. A Typical Model Based Testing Process

3.1 Construction of intermediate model

Several strategies have been reported to generate test

cases using a variety of models. However in many

cases the test cases based on more than one model

type. In such cases ,it becomes necessary to first

construct an integrated model based on the

information present in different models.

3.2 Generation of test scenarios

The test cases generated from models are in form of

sequences of test scenarios. Test scenarios specify a

high level test case rather than the exact data to be

input to the system. For example, in the case of FSMs,

it can be the sequence in which specifies states and

transitions must be undertaken to test the system-

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Dr. S. Saravana Kumar, Int J Sci Res Sci Eng Technol. November-December-2019; 6 (6) : 13-20

 17

called a transition path. The sequences of different

transition labels along the generated paths form the

required test scenarios. Similarly from the sequence

diagrams the message paths can be generated. The

exact sequence messages in which the classes must

interact for testing the system is shown.

3.3 Test Generation

The difficulty of generating tests from a model

depends on the nature of the model. Models that are

useful for testing usually possess properties that make

test generation effortless and, frequently, automatable.

For some models, all that is required is to go through

combinations of conditions described in the model,

requiring simple knowledge of combinatory. There

are a variety of constraints on what constitutes a path

to meet the criteria for tests. It includes having the

path start and end in the starting state, restricting the

number of loops or cycles in a path, and restricting

the states that a path can visit.

3.4 Automatic test case execution

In certain cases the tests can even be performed

manually. Manual testing is labor-intensive and time

consuming. However, the generated test suite is

usually too large for a manual execution. Moreover, a

key point in MBT is the frequent regeneration and re-

running of the test suite whenever the underlying

model is changed. Accordingly achieving the full

potential of MBT requires automated test execution.

Usually, using the available testing interface for the

software, the abstract test suite is translated into an

executable test script. Automatic test case execution

also involves test coverage analysis. Based on the test

coverage analysis, the tests generation step may be

fine tuned or different strategies may be tried out.

3.5 Test Coverage Analysis

Each test generation method targets certain specific

features of the system to be tested. The extent to

which the targetted features are tested can be

determined using test coverage analysis[10,12]. The

important coverage analysis based on a model can be

the following: all model parts(or test

scenarios)coverage is achieved when the test reaches

every part in the model at least once. Important test

coverage required based on UML models can be the

following: path coverage, message path coverage,

transition path coverage, scenario coverage, dataflow

coverage, polymorphic coverage, inheritance

coverage. Scenarios coverage is achieved when the

test executes every scenario identifiable in the model

at least once.

IV. A CRITIQUE OF MBT

Some important MBT advantages can be summarized

in the following points. It allows achieving higher test

coverage. This is especially true of certain behavioral

aspects which are difficult to identify in the code.

Another important advantage of model–based testing

is that when a code change occurs to fix a coding

error, the test cases generated from the model need

not change. As an example, changing the behavior of

a single control in the user interface of the software

makes all the test cases using that control outdated. In

traditional testing scenarios, the tester has to

manually search the affected test cases and update

them. As even when code changes, the changed code

still confirms to the model. Model based test suite

generation often overcomes this problem.

However MBT does have certain restrictions and

limitations. Needless to say, as with several other

approaches, to reap the most benefit from MBT,

substantial investment needs to be made. Skills, time,

and other resources need to be allocated for making

preparations, overcoming common difficulties, and

working around the major drawbacks. Therefore,

before embarking on a MBT endeavor, this overhead

needs to be weighed against potential rewards in

order to determine whether a model-based technique

is sensible to the task at hand.

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Dr. S. Saravana Kumar, Int J Sci Res Sci Eng Technol. November-December-2019; 6 (6) : 13-20

 18

MBT demands certain skills of testers. They need to

be familiar with the model and its underlying and

supporting mathematics and theories. In the case of

finite state models, this means a working knowledge

of the various forms of finite state machines and a

basic familiarity with formal languages, automata

theory, and perhaps graph theory and elementary

statistics. They need to possess expertise in tools,

scripts, and programming languages necessary for

various tasks. For example, in order to simulate

human user input, testers need to write simulation

scripts in a specialized language.

In order to save resources at various stages of the

testing process, MBT requires sizeable initial effort.

Selecting the type of model, partitioning system

functionality into multiple parts of a model, and

finally building the model are all labor-intensive tasks

that can become prohibitive in magnitude without a

combination of careful planning, good tools, and

expert support. Finally, there are drawbacks of

models that cannot be completely avoided, and

workarounds need to be devised. The most prominent

problem for state models (and most other similar

models) is state space explosion. Briefly, models of

almost any non-trivial software functionality can

grow beyond management even with tool support.

State explosion propagates into almost all other

model-based tasks such as model maintenance,

checking and review, non-random test case

generation, and achieving coverage criteria. The

generated test cases may in many cases get irrevalent

due to the disparity between a model and its

corresponding code.MBT can never displace code

based testing, since models constructed during the

development process lack several details of

implementation that are required to generate test

cases.

Fortunately, many of these problems can be resolved

one way or the other with some basic skill and

organization. Alternative styles of testing need to be

considered where insurmountable problems that

prevent productivity are encountered.

V. MBT IN SOFTWARE ENGINEERING: TODAY

AND TOMORROW

Good software testers cannot avoid models. MBT

calls for explicit definition of the testing endeavor.

However, software testers of today have a difficult

time planning such a modeling effort. They are

victims of the ad hoc model, either in advance or

throughout the nature of the development process

where requirements change drastically and the rule of

the day is constant ship mode. Today, the scene seems

to be changing. Modeling in general seems to be

gaining favor; particularly in domains where quality

is essential and less-than-adequate software is not an

option. When modeling occurs as a part of the

specification and design process, these models can be

leveraged to form the basis of MBT.

There is promising future for MBT as software

becomes even more ubiquitous and quality becomes

the only distinguishing factor between brands. When

all vendors have the same features, the same ship

schedules and the same interoperability, the only

reason to buy one product over another is quality.

MBT, of course, cannot and will not guarantee or

even assure quality. However, its very nature,

thinking through uses and test scenarios in advance

while still allowing for the addition of new insights,

makes it a natural choice for testers concerned about

completeness, effectiveness and efficiency.

The real work that remains for the near future is

fitting specific models (finite state machines,

grammars or language-based models) to specific

application domains. Perhaps, special purpose models

will be made to satisfy very specific testing

requirements and models that are more general will

be composed from any number of pre-built special-

purpose models. However, to achieve these goals,

models must evolve from mental understanding to

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Dr. S. Saravana Kumar, Int J Sci Res Sci Eng Technol. November-December-2019; 6 (6) : 13-20

 19

artifacts formatted to achieve readability and

reusability. We must form an understanding of how

we are testing and be able to sufficiently

communicate that understanding so that testing

insight can be encapsulated as a model for any and all

to benefit from.

VI. CONCLUSION

Good software testers cannot avoid models. MBT has

emerged as a useful and efficient testing method for

realizing adequate test coverage of systems. The usage

of MBT reveals substantial benefit in terms of increase

productivity and reduced development time and costs.

On the other hand MBT can’t replace code based

testing since models are abstract higher level

representations and lack of several details present in

the code. It is expected that in future models shall be

constructed by extracting relevant information both

from the design which can automate the test case

design process to a great deal.

Not surprisingly, there are no software models today

that fit all intents and purposes. Consequently, for

each situation decisions need to be made as to what

model (or collection of models) are most suitable.

There are some guidelines to be considered that are

derived from earlier experiences. The choice of a

model also depends on aspects of the system under

test and skills of user. However, there is little or no

data published that conclusively suggests that one

model outstands others when more than one model is

intuitively appropriate.

VII. REFERENCES

[1]. W. Prenninger, A. Pretschner, Abstractions for

Model-Based Testing, ENTCS 116 (2005) 59-

71.

[2]. A. Pretschner, J. Philipps, Methodological

Issuesin Model-Based Testing, in: [29], 2005,

pp. 281-291.

[3]. J. Philipps, A. Pretschner, O. Slotosch,E.

Aiglstorfer, S. Kriebel, K. Scholl, Model based

test case generation for smart cards, in:Proc.

8th Intl. Workshop on Formal Meth. For

Industrial Critical Syst., 2003, pp. 168-192.

[4]. G. Walton, J. Poore, Generating transition

probabilities to support model-based software

testing,Software: Practice and Experience 30

(10) (2000) 1095-1106.

[5]. A. Pretschner, O. Slotosch, E. Aiglstorfer,S.

Kriebel, Model based testing for real-the

inhouse card case study, J. Software Tools for

Technology Transfer 5 (2-3) (2004) 140-157.

[6]. A. Pretschner, W. Prenninger, S. Wagner, C.

K¨uhnel, M. Baumgartner, B. Sostawa, R.

Z¨olch, T. Stauner, One evaluation of model

based testing and its automation, in: Proc.

ICSE’05, 2005, pp. 392-401.

[7]. E. Bernard, B. Legeard, X. Luck, F. Peureux,

Generation of test sequences from formal

specifications:GSM 11.11 standard case-study,

SW Practice and Experience 34 (10) (2004) 915

- 948.

[8]. E. Farchi, A. Hartman, S. S. Pinter, Using a

model-based test generator to test for standard

conformance, IBM Systems Journal 41 (1)

(2002) 89-110.

[9]. D. Lee, M. Yannakakis, Principles and methods

of testing finite state machines — A survey,

Proceedings of the IEEE 84 (2) (1996) 1090-

1126.

[10]. H. Zhu, P. Hall, J. May, Software Unit Test

Coverage and Adequacy, ACM Computing

Surveys 29 (4) (1997) 366-427.

[11]. B. Beizer, Black-Box Testing : Techniques for

Functional Testing of Software and Systems,

Wiley, 1995.

[12]. C. Gaston, D. Seifert, Evaluating Coverage-

Based Testing, in: [29], 2005, pp. 293-322.

[13]. A. Offutt, S. Liu, A. Abdurazik, P. Ammann,

Generating test data from state-based

specifications,J. Software Testing, verification

and Reliability 13 (1) (2003) 25-53.

International Journal of Scientific Research in Science, Engineering and Technology (www.ijsrset.com)

Dr. S. Saravana Kumar, Int J Sci Res Sci Eng Technol. November-December-2019; 6 (6) : 13-20

 20

[14]. A. Pretschner, Model-Based Testing in

Practice,in: Proc. Formal Methods, Vol. 3582

of SpringerLNCS, 2005, pp. 537-541.

Cite this article as :

Dr. S. Saravana Kumar, "Model Based Object-

Oriented Software Testing", International Journal of

Scientific Research in Science, Engineering and

Technology (IJSRSET), Online ISSN : 2394-4099,

Print ISSN : 2395-1990, Volume 6 Issue 6, pp. 13-20,

November-December 2019. Available at doi :

https://doi.org/10.32628/IJSRSET196528

Journal URL : http://ijsrset.com/IJSRSET196528

https://doi.org/10.32628/IJSRSET196528
http://ijsrset.com/IJSRSET196528

